Diversity index

A diversity index is a quantitative measure that reflects how many different types (such as species) there are in a dataset (a community), and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types - wikipedia

When diversity indices are used in ecology, the types of interest are usually species, but they can also be other categories, such as genera, families, functional types or haplotypes. The entities of interest are usually individual plants or animals, and the measure of abundance can be, for example, number of individuals, biomass or coverage. In demography, the entities of interest can be people, and the types of interest various demographic groups. In information science, the entities can be characters and the types the different letters of the alphabet. The most commonly used diversity indices are simple transformations of the effective number of types (also known as 'true diversity'), but each diversity index can also be interpreted in its own right as a measure corresponding to some real phenomenon (but a different one for each diversity index).

Many indices only account for categorical diversity between subjects or entities. Such indices however do not account for the total variation (diversity) that can be held between subjects or entities which occurs only when both categorical and qualitative diversity are calculated.

# Richness

Richness simply quantifies how many different types the dataset of interest contains. For example, species richness (usually noted ) of a dataset is the number of different species in the corresponding species list. Richness is a simple measure, so it has been a popular diversity index in ecology, where abundance data are often not available for the datasets of interest. Because richness does not take the abundances of the types into account, it is not the same thing as diversity, which does take abundances into account. However, if true diversity is calculated with the effective number of types equals the actual number of types.

True diversity, or the effective number of types, refers to the number of equally abundant types needed for the average proportional abundance of the types to equal that observed in the dataset of interest (where all types may not be equally abundant). The true diversity in a dataset is calculated by first taking the weighted generalized mean Mq−1 of the proportional abundances of the types in the dataset, and then taking the reciprocal of this. The equation is: